Chapter 1 - Connectivity

Let G be a graph and $v \in V(G)$, $e \in E(G)$, and $e' \in {V \choose 2} \setminus E(G)$

- $G e = (V, E \setminus \{e\})$ is edge deletion
- $G + e' = (V, E \cup \{e\})$ is a new edge addition
- $G v = (V \setminus \{v\}, \{e \in E, v \notin e\}$ is vertex deletion
- $G\%e = (V \cup \{z\}, (E \setminus \{e\}) \cup \{\{z, x\}, \{z, y\}\})$, where e = xy and z is a new vertex is edge subdivision

1: Perform G - e, G + e', G - v, and G% e on the following graph G.

Solution:

A graph G is **connected** if for every two vertices u, v, the exists a walk in G from u to v. A **connected component** in G is a maximal subgraph of G that is connected.

Complement of a complete graph is an independent set.

2: Show that if G is disconnected then \overline{G} is connected.

Solution: Let $V(G) = V_1 \cup V_2$, such that there are no edges between V_1 and V_2 and each is non-empty. Now verify the definition that \overline{G} is now connected.

A separating set of G is a set of vertices or edges, S, such that the number of components of G is less than the number of components of G - S.

Vertex v is a cut vertex of G if $\{v\}$ is a separating set of G. Edge e is a bridge if $\{e\}$ is a separating set of G.

3: Find a graph that has more cut-vertices than bridges and a graph that has more bridges than cut-vertices. **Solution:** A star has more bridges than cut-vertices, or any tree. Two triangles sharing a vertex have one cut-vertex but bridges.

A graph G is called k-connected (for $k \in \mathbb{N}$) if |G| > k and G - X is connected for every set $X \subseteq V$ with |X| < k. Largest k such that G is k-connected is called **connectivity** of G, denoted $\kappa(G)$.

Notice $\kappa(K_n) = n - 1$.

A graph G is called ℓ -edge if G - X is connected for every set $X \subseteq E$ with $|X| < \ell$. Largest ℓ such that G is ℓ -connected is called edge-connectivity of G, denoted $\lambda(G)$.

4: Show that if G is non-trivial then $\kappa(G) \leq \lambda(G) \leq \delta(G)$. High connectivity requires high minimum degree.

Solution: Second inequality holds because edges incident to a minimum degree vertex form an edge-cut.

Let F be an edge-cut with $|F| = \lambda(G)$. If exists v not incident to any edge in F, we take endpoints of F from it's side of cut. So every vertex is adjacent to something in F. Notice that $|N(v)| \leq |F|$. We take cut G - N(v). If G - N(v) = v for all vertices v, we have a complete graphs and $\kappa(G) = \lambda(G) = |G| - 1$.

5: Which of these 2 graphs is connected? Identify connected components.

Solution: Left one is, right one is not.

6: Find a complement of the following graphs.

